Conferenciantes Invitados

Pendiente de titulo
Manuel Hermenegildo herme@fi.upm.es

Technical University of Madrid
Departamento of Computer Science

Campus de Montegancedo
E-28660 Boadilla del Monte. Madrid. Spain.

Tlf. +34913367448
Fax +34913524819
Resumen: Abstract Interpretation has allowed the development of sophisticated program analyses which are provably correct and practical. The semantic approximations produced by such analyses have been traditionally applied to optimization during program compilation. In this talk we present a framework for combined static/dynamic debugging and validation using semantic approximations. Program validation and detection of errors is first performed at compile-time by inferring properties of the program via abstract interpretation-based static analysis and comparing this information against (partial) specifications written in terms of assertions. The comparison process can result in proving statically (i.e., at compile-time) that the assertions hold (i.e., they are validated) or that they are violated, and thus bugs have been detected. User-provided assertions (or parts of assertions) which cannot be statically proved nor disproved are optionally translated into run-time tests. Both the static and the dynamic checking are provably safe in the sense that all errors flagged are definite violations of the specifications. Classical examples of such assertions are type declarations. However, herein we are interested in supporting a more general setting in which assertions are optional and can be of a much more general nature, stating additionally other properties, some of which cannot always be determined statically for all programs. We will illustrate the practical usefulness of the framework by demonstrating an implementation of these ideas in CiaoPP, the preprocessor of the Ciao programming system, which uses abstract interpretation to infer properties of program points, including types, modes and other variable instantiation properties, non-failure, determinacy, bounds on computational cost, bounds on sizes of data in the program, etc.

Pendiente de titulo
Heikki Mannila (A) Heikki.Mannila@cs.Helsinki.FI

HIIT Basic Research Unit University of Helsinki and Helsinki University of Technology
PO Box 26,
FIN-00014 Helsinki. Finland.


Resumen: Data mining has in recent years emerged as an interesting area in the boundary between algorithms, probabilistic modeling, statistics, and databases. Data mining research can be divided into global approaches, which try to model the whole data, and local methods, which try to find useful patterns occurring in the data. We discuss briefly some simple local and global techniques, review two attempts at combining the approaches, and list open problems with an algorithmic flavor.

Pendiente de titulo
Madhav Marathe marathe@lanl.gov

Los Alamos National Laboratory USA.

Resumen: Over the last three decades, language recognition models of computation and associated resource bounded reductions have played a central role in characterizing the computational complexity of combinatorial problems. However, due to their generality, these concepts have inherent limitations -- they typically ignore the underlying structure and semantics of the problem instances. Thus they are generally not "robust" in terms of simultaneously classifying variants of the original problem. For example consider the two well studied satisfiability problems 3SAT and 1-3SAT (One-in-Three SAT). Highly efficient resource-bounded reductions (quasi-linear time and linear space) exist from 3SAT to 1-3SAT showing that 1-3SAT is NP-hard. But such efficient resource-bounded reductions cannot generally be used to characterize simultaneously, the complexity of the variants such as MAX-1-3SAT (optimization version) or #1-3SAT (counting version) or Q-1-3SAT (quantified version), or H-1-3SAT (hierarchically specified version) or even Pl-1-3SAT (planar version). In the past, the complexities of these variants has been characterized by devising "new" reductions for each variant. In this talk, I will outline research efforts aimed at developing a "predictive computational complexity theory''. The goal here is to characterize simultaneously (and in a predictive manner) the relative complexity and approximability of a large class of combinatorial problems. Applications of these general ideas include: (A) [Upper bounds] Efficient approximation algorithms and approximation schemes with provable performance guarantees for large classes of natural NP-, PSPACE- and NEXPTIME-hard optimization problems. (B) [Lower bounds] General results characterizing simultaneously, the decision, counting, optimization and approximation complexities of generalized constraint satisfaction problems and their applications to combinatorial problems. (C) Further insights on recently proposed ideas on periodically and hierarchically specified problems and its implications to understanding the relationship between various computational complexity classes (e.g. Freedman's ideas on approaching the P vs NP question).

Titulo por determinar
Maurice Nivat (2002 EATCS award) tcsmn@club-internet.fr

Paris. France.

Resumen: This paper studies the problem of reconstructing binary matrices that are only accessible through few evaluations of their discrete X-rays. Such question is prominently motivated by the demand in material science for developing a tool for the reconstruction of crystalline structures from their images obtained by high-resolution transmission electron microscopy. Various approaches have been suggested for solving the general problem of reconstructing binary matrices that are given by their discrete X-rays in a number of directions, but more work have to be done to handle the ill-posedness of the problem. We can tackle this ill-posedness by limiting the set of possible solutions, by using appropriate a priori information, to only those which are reasonably typical of the class of matrices which contains the unknown matrix that we wish to reconstruct. Mathematically, this information is modelled in terms of a class of binary matrices to which the solution must belong. Several papers study the problem on classes of binary matrices on which some connectivity and convexity constraints are imposed. We study the reconstruction problem on some new classes consisting of binary matrices with periodicity properties, and we propose a polynomial-time algorithm for reconstructing these binary matrices from their orthogonal discrete X-rays.

Titulo por determinar
Andrew Pitts Andrew.Pitts@cl.cam.ac.uk

University of Cambridge
Departamento Computer Laboratory

William Gates Building, JJ Thompson Avenue
CB3 0FD Cambridge. United Kingdom.

Tlf. +44 1223 334629
Fax +44 1223 334678
Resumen: The notion of symmetry in mathematical structures is a powerful tool in many branches of mathematics. The talk presents an application of this notion to programming language theory.

Pendiente de titulo
John Reif reif@cs.duke.edu

Duke University Durham. USA.

Resumen: While the topic of Molecular Computation would have appeared even a half dozen years ago to be purely conjectural, it now is an emerging subfield of computer science with the development of its theoretical basis and a number of moderate to large-scale experimental demonstrations. This paper focuses on a subarea of Molecular Computation known as " DNA self-assembly". Self-assembly is the spontaneous self-ordering of substructures into superstructures driven by the selective affinity of the substructures. DNA provides a molecular scale material for effecting this programmable self-assembly, using the selective affinity of pairs of DNA strands to form DNA nanostructures. DNA self-assembly is the most advanced and versatile system known for programmable construction of patterned systems on the molecular scale. The methodology of DNA self-assembly begins with the synthesis of single-strand DNA molecules that self-assemble into macromolecular building blocks called DNA tiles. These tiles have sticky ends that match the sticky ends of other DNA tiles, facilitating further assembly into large structures known as DNA tiling lattices. In principal you can make the DNA tiling assemblies form any computable two- or three-dimensional pattern, however complex, with the appropriate choice of the tile?s component DNA. This paper overviews the evolution of DNA self-assembly techniques from pure theory to experimental practice. We describe how some theoretical developments have made a major impact on the design of self-assembly experiments, as well as a number of theoretical challenges remaining in the area of DNA self-assembly. We descuss algorithms and software for the design, simulation and optimization of DNA tiling assemblies. We also describe the first experimental demonstrations of DNA self-assemblies that execute molecular computations and the assembly of patterned objects at the molecular scale. Recent experimental results indicate that this technique is scalable. Molecular imaging devices such as atomic force microscopes and transmission electron microscopes allow visualization of self-assembled two-dimensional DNA tiling lattices composed of hundreds of thousands of tiles. These assemblies can be used as scaffolding on which to position molecular electronics and robotics components with precision and specificity. The programmability lets this scaffolding have the patterning required for fabricating complex devices made of these components.

L(A) = L(B)? decidability results from complete formal systems
G?raud S?nizergues (2002 G?del Prize) ges@labri.u-bordeaux.fr

Bordeaux I Nouvelle
Departamento LaBRI
Bordeaux. France.

Resumen: The equivalence problem for deterministic pushdown automata is shown to be decidable. We exhibit a complete formal system for deducing equivalent pairs of deterministic rational boolean series on the alphabet associated with a dpda M. We then extend the results to deterministic pushdown transducers from a free monoid into an abelian group. A general algebraic and logical framework, inspired by Harrison et al. (Theoret. Comput. Sci. 9 (1979) 173-205), Courcelle (Math. Systems Theory 16 (1983) 191-231) and Meitus (Kybernetika 5 (1989) 14-25 (in Russian)) is developed. Theoretical Computer Science, Vol 251 (2001), pages 1 - 166 copyright 2001 Elsevier Science B.V.
SEE THE NEWS



[Principal] [Programa] [Articulos aceptados] [Enviar Articulos] [Noticias] [Fechas Importantes] [Informacion] [Conferenciantes Invitados] [Enlaces] [Contacte con Nosotros] [Patrocinadores] [Peticion de Articulos] [Organizacion] [Comite de Programa] [Talleres y tutoriales] [Ayuda]